
The random Fibonacci recurrence and the visible points of the plane

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 L323

(http://iopscience.iop.org/0305-4470/39/20/L05)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) L323–L328 doi:10.1088/0305-4470/39/20/L05

LETTER TO THE EDITOR

The random Fibonacci recurrence and the visible
points of the plane

Tamás Kalmár-Nagy

Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA

E-mail: iop@kalmarnagy.com

Received 6 December 2005
Published 3 May 2006
Online at stacks.iop.org/JPhysA/39/L323

Abstract
In this letter, we show a connection between the random Fibonacci recurrence
and the visible points of the plane. In particular, we show that by
suitably modifying the rules of the random Fibonacci map, there is a
unique correspondence between the visible points (points with relative prime
coordinates) of the first quadrant and the vertices of a self-similar graph (what
we call the Fibonacci graph). The proposed random recurrence can then be
interpreted as a random walk on this graph.

PACS numbers: 05.40.Fb, 02.10.De, 02.50.−r, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A variant of the well-known Fibonacci series is the so-called random Fibonacci recurrence
xn+1 = xn ± xn−1 (Viswanath 2000). This recurrence can also be written as the second-order
difference equation (two-dimensional map)(

xn−1

xn

)
= Dn

(
xn−2

xn−1

)
, (1)

where the coefficient matrix Dn at time n is randomly (with probability 1/2) chosen from the
set {A,B}, with

A =
(

0 1
1 1

)
B =

(
0 1
1 −1

)
. (2)

Viswanath (2000) showed that |xn| diverges (almost surely) as γ n, where γ = limn→∞ n
√|xn| =

1.131 988 . . . using the theory of random matrix products (Furstenberg’s theorem), the Stern–
Brocot division of the real line and a computer-assisted integration over a fractal measure.
Embree and Trefethen (1999) numerically investigated xn+1 = xn ± βxn−1, a generalization
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Figure 1. The action of the random Fibonacci maps.

of the random Fibonacci sequence. Sire and Krapivsky (2001) also studied this sequence and
presented expansions for the Lyapunov exponent for small and large βs. For the classical case
β = 1, they obtained exact non-perturbative results.

The objective of this letter is to show the equivalence between the random Fibonacci
recurrence (1) and a random walk on a self-similar graph whose vertices are the visible
points of the plane. In the next section, we describe the structure induced by the random
Fibonacci series and propose a modification to the recurrence rules that exploits the symmetry
of this structure. In section 3, we show that this modified recurrence gives rise to a self-
similar, connected graph and the associated random walk on its nodes. Finally, we discuss the
relevance of these findings and point out connections to other areas.

2. The structure induced by the random Fibonacci series

The Lyapunov exponent (the measure of divergence) for the random Fibonacci series can also
be expressed as a path average by considering all the possible values |xn| can attain. Clearly,

γ = lim
n→∞ exp〈ln|xn|〉 = lim

n→∞

(
m∏

i=1

|xn,i |1/m

)1/n

= lim
n→∞

∣∣∣∣∣
m∏

i=1

xn,i

∣∣∣∣∣
1/(nm)

(3)

where the average (more precisely the geometric mean) is taken over all the m possible paths of
length n. To characterize all possible paths, let us first investigate the geometrical structure of
these paths starting from (1, 1), corresponding to the usual initial condition for the Fibonacci
sequence. The transformations A,B both take a lattice point (a point with integer coordinates)
(i, j) into another one, according to

A : (i, j) → (j, i + j)

B : (i, j) → (j, i − j).
(4)

Some of these paths are shown in figure 1. Here, the solid and dashed lines correspond
to the actions of A and B, respectively. Since we are interested in the behaviour of the
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Figure 2. The random Fibonacci maps on the first quadrant.

absolute values of the sequence elements, we exploit the apparent symmetry of this structure
to define ‘equivalent’ maps acting on the first quadrant of the integer lattice Z

2. In particular,
we note that the four points (i, j), (−i, j), (i,−j), (−i,−j), i, j ∈ Z

+, get mapped to
(j, i +j), (j, i −j), (j, j − i), (j,−i −j), (−j, i −j), (−j, i +j), (−j,−i −j), (−j, j − i).
These coordinates have absolute value of either (j, i + j) or (j, |i − j |). Thus, we introduce
the modified random Fibonacci recurrence with the maps

A : (i, j) → (j, i + j)

B : (i, j) → (j, |i − j |) i, j > 0.
(5)

Figure 2 depicts the geometry of the mappings, while figure 3 shows some points resulting
from the repeated applications of A and B (with (1, 1) as the initial point). Here, we make
two observations:

(i) The coordinates of points in figure 3 are relative primes.
(ii) Three-link loops can be seen in figure 2, meaning that the application of A followed by B

twice results in a closed path.

Points with relative prime coordinates are also called visible points, implying that there
is no other lattice point on the segment joining them with the origin. The structure in figure 2
can also be interpreted as a directed graph (what we call the Fibonacci graph F) and in the
next section we explore its topology.

3. The Fibonacci graph and the visible points

First we prove observation (2) of the previous section, i.e. that (B ◦ B ◦ A)(i, j) = (i, j).
First, B is replaced with the two linear maps

B1 : (i, j) →
(

0 1
−1 1

)
(i, j) = (j, j − i) i < j

B2 : (i, j) →
(

0 1
1 −1

)
(i, j) = (j, i − j) i > j.

(6)
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Figure 3. Visible points on the lattice Z2.
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Figure 4. The Fibonacci graph.

We call a lattice point type a if its first coordinate is less than the second (i.e., it is above the
diagonal) and type b if the fist coordinate is greater than the second (the point is below the
diagonal). It is clear that A maps (i, j) to (j, i + j), a type a point. When B is applied to such
a point, the new coordinates can be calculated by applying B1, resulting in (i + j, i), a point of
type b. Since now the second coordinate is smaller, the effect of B on this point is equivalent
to that of B2, leading back to (i, j). Indeed,

(B ◦ B ◦ A)(i, j) = B2B1A(i, j) = (i, j). (7)

Using this property of the maps, we can ‘unfold’ the Fibonacci graph as illustrated in figure 4.
Clearly, this graph has 2n distinct nodes (2n−1 type a points and 2n−1 type b points) at the nth
level (n = 0, 1, . . .). This structure is similar to several objects studied previously, such as
the Stern–Brocot tree, the Calkin–Wilf tree (Calkin and Wilf 2000) and the construction of
Alexander and Zagier (1991), that they also called the Fibonacci graph.

Now we return to observation (1). A point with integer coordinates (i, j) is called visible
iff gcd(i, j) = 1. Mosseri (1992) proved that the geometrical structure associated with the
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set of visible points V is the Möbius transform of the original lattice. This set has a D4

dihedral group symmetry, non-periodic and is invariant to the action of GL(2, Z) (the group
of integer 2 × 2 matrices with determinant ±1). The invariance property is seen from the fact
that visible points are transformed to visible points (Hardy and Wright 1979). Note that the
determinants of A,B1, B2 are 1,−1,−1, respectively. Lagarias and Tresser (1995) showed
that the rational numbers can be presented as the set of vertices of a degree-three tree (what
they call the extended Farey tree). Here, we will show that the rational numbers can also be
assigned to the vertices of a connected, self-similar graph (what we call the Fibonacci graph).

We say that a lattice point (k, l) is reachable from another lattice point (i, j), if there
exist a sequence of transformations (using A and B) that takes (i, j) to (k, l). Then (i, j)

is reachable from (1, 1) iff (i, j) is visible. Moreover, every visible point is reachable from
every visible point. To show this we construct the sequence of transformations taking (i, j)

to (1, 1), thereby effectively providing the address of a point. The algorithm is simple and
can be read off from figure 4. If (i, j) is type a then the trailing letter of the address is A,
calculate the new (i, j) as A−1(i, j) = (j − i, i). If (i, j) is type b, then the trailing letter of
the address is BA, calculate the new (i, j) as (BA)−1(i, j) = B−1

2 (i, j) = (j, i − j). These
steps are repeated and the algorithm is terminated at (i, j) = (1, 1). Therefore, the Fibonacci
graph is connected and its vertices are the visible points.

The modified random Fibonacci recurrence (5) thus corresponds to a random walk on
this structure. The proposed algorithm is essentially the same as the subtractive version of
Euclid’s algorithm.

4. Discussion

The set of visible points has many interesting properties. For example, the density of the
visible points is 1/ζ(2) = 6/π2 (Apostol 1976, section 3.8). This is equivalent to saying
that the probability of two integers chosen at random being relatively prime is 6/π2 ∼ 0.608.
Baake et al (1994) calculate the Fourier transform (structure factor) of this set, continuing and
generalizing the work by Schroeder (1982) and Mosseri (1992). Due to the correspondence
between the modified random Fibonacci recurrence and a random walk on the visible points,
properties of this set can be extracted as averages of quantities associated with random walks
on graphs (Burioni and Cassi 2005). This formulation might also provide a novel way to
evaluate number theoretical products (like the ones in Campbell (1994)). Since visible points
are intimately related to the structure of quasicrystals, these developments are expected to
further research in that area as well. Another interesting topic worth pursuing is the random
walk on self-similar structures. For example, Teufl (2002) investigates asymptotic properties
of random walks on self-similar graphs. In a future paper, we will characterize some properties
associated with a random walk on the Fibonacci graph as well as on n-loop self-similar graphs.
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